The Arabidopsis D-type cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-dependent kinase Cdc2a but are differentially controlled.
نویسندگان
چکیده
D-type cyclins (CycD) play key roles in linking the Arabidopsis cell cycle to extracellular and developmental signals, but little is known of their regulation at the post-transcriptional level or of their cyclin-dependent kinase (CDK) partners. Using new antisera to CycD2 and CycD3, we demonstrate that the CDK partner of these Arabidopsis cyclins is the PSTAIRE-containing CDK Cdc2a. Previous analysis has shown that transcript levels of CycD2 and CycD3 are regulated in response to sucrose levels and that both their mRNA levels and kinase activity are induced with different kinetics during the G(1) phase of cells reentering the division cycle from quiescence. Here we analyze the protein levels and kinase activity of CycD2 and CycD3. We show that CycD3 protein and kinase activity parallel the abundance of its mRNA and that CycD3 protein is rapidly lost from cells in stationary phase or following sucrose removal. In contrast to both CycD3 and the regulation of its own mRNA levels, CycD2 protein is present at constant levels. CycD2 kinase activity is regulated by sequestration of CycD2 protein in a form inaccessible to immunoprecipitation and probably not complexed to Cdc2a.
منابع مشابه
Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression.
In most plants, sucrose is the major transported carbon source. Carbon source availability in the form of sucrose is likely to be a major determinant of cell division, and mechanisms must exist for sensing sugar levels and mediating appropriate control of the cell cycle. We show that sugar availability plays a major role during the G(1) phase by controlling the expression of CycD cyclins in Ara...
متن کاملModulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana.
Previous studies on the cell cycle of Arabidopsis thaliana have been hindered by the lack of synchronous cell culture systems. We have used liquid callus cultures and a cycloheximide-synchronized suspension culture of Arabidopsis to investigate changes in cyclin transcript levels in response to exogenous auxin, cytokinin, and nutrients, and during the cell cycle. CYCD1 (delta 1) transcript was ...
متن کاملGenomic organization and evolutionary conservation of plant D-type cyclins.
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the po...
متن کاملA plant-specific cyclin-dependent kinase is involved in the control of G2/M progression in plants.
Cyclin-dependent kinases (CDKs) control the key transitions in the eukaryotic cell cycle. All the CDKs known to control G(2)/M progression in yeast and animals are distinguished by the characteristic PSTAIRE motif in their cyclin-binding domain and are closely related. Higher plants contain in addition a number of more divergent non-PSTAIRE CDKs with still obscure functions. We show that a plan...
متن کاملDistinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells.
The commitment of eukaryotic cells to division normally occurs during the G1 phase of the cell cycle. In mammals D-type cyclins regulate the progression of cells through G1 and therefore are important for both proliferative and developmental controls. Plant CycDs (D-type cyclin homologs) have been identified, but their precise function during the plant cell cycle is unknown. We have isolated th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 276 10 شماره
صفحات -
تاریخ انتشار 2001